Publications in peer-reviewed journals and IEEE conferences

[31] Deshpande S., Bordas S., Lengiewicz J. (2024) MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations, Engineering Applications of Artificial Intelligence
Impact Factor (IF)=8.0

[30] Lavigne T., Bordas S.P.A., Lengiewicz J. (2023) Identification of material parameters and traction field for soft bodies in contact, Computer Methods in Applied Mechanics and Engineering
IF=6.756

[29] Deshpande S., Sosa R.I., Bordas S., Lengiewicz J. (2023) Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics, Frontiers in Materials
IF=3.985

[28] Lavigne T., Mazier A., Perney A., Bordas S.P.A., Hild F., Lengiewicz J. (2022) Digital Volume Correlation for Large Deformation of Soft Tissues: Pipeline and Application to Breast ex vivo Deformation, Journal of the mechanical behavior of biomedical materials, vol. 136, pp. 105490
IF=4.042

[27] Deshpande S., Lengiewicz J., Bordas S.P.A. (2022) Probabilistic Deep Learning for Real-Time Large Deformation Simulations, Computer Methods in Applied Mechanics and Engineering, vol. 398, 115307
IF=6.756

[26] Piranda B., Chodkiewicz P., Hołobut P., Bordas S.P.A., Bourgeois J., Lengiewicz J. (2021) Distributed prediction of unsafe reconfiguration scenarios of modular robotic programmable matter, IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2226-2233
IF=6.123 (rank A* CORE journal)

[25] Magliulo M., Lengiewicz J., Zilian A., Beex L.A.A. (2021) Frictional interactions for non‐localised beam‐to‐beam and beam‐inside‐beam contact, Intern. J. for Numerical Methods in Engineering, 122 (7), pp. 1706-1731.
IF=3.021

[24] Hołobut P., Bordas S.P.A., Lengiewicz J. (2020) Autonomous model-based assessment of mechanical failures of reconfigurable modular robots with a conjugate gradient solver, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.11696-11702.
(rank A CORE conference)

[23] Lengiewicz J., Souza M., Lahmar M.A., Courbon C., Dalmas D., Stupkiewicz S., Scheibert J. (2020) Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts, Journal of The Mechanics and Physics of Solids, Vol.143, pp.104056-1-19.
IF=5.582

[22] Magliulo M., Lengiewicz J., Zilian A., Beex L.A.A. (2020) Beam-inside-beam contact: mechanical simulations of slender medical instruments inside the human body, Computer Methods and Programs in Biomedicine, Vol.196, pp.105527-1-14.
IF=7.027

[21] Magliulo M., Lengiewicz J., Zilian A., Beex L.A.A. (2020) Non-localised contact between beams with circular and elliptical cross-sections, Computational Mechanics, Vol.65, No.5, pp.1247-1266.
IF=4.391

[20] Lengiewicz, J., Holobut, P. (2019) Efficient Collective Shape Shifting and Locomotion of Massively-Modular Robotic Structures, Autonomous Robots, 43(1), pp. 97-122.
IF=3.255

[19] Vakis, AI., et al. (27 authors) (2018) Modeling and simulation in tribology across scales: An overview, Tribology International, 125, pp. 169-199.
IF=5.62

[18] Leyva-Mendivil M.F., Lengiewicz J., Limbert G. (2018) Skin friction under pressure. The role of micromechanics, Surface Topography: Metrology and Properties, Vol.6, No.1, pp.1-14.
IF=2.038

[17] Chodkiewicz P., Lengiewicz J., Zalewski R. (2018) Discrete element method approach to modelling VPP dampers, MATEC Web of Conferences, Vol.157, No.02014, pp.1-8.

[16] Leyva-Mendivil M.F., Lengiewicz J., Page A., Bressloff N.W., Limbert G. (2017) Implications of Multi-asperity Contact for Shear Stress Distribution in the Viable Epidermis – An Image-based Finite Element Study, Biotribology, Vol.11, pp.110-123.
IF=2.25

[15] Leyva-Mendivil, M.F., Lengiewicz, J., Page, A. Bressloff, N.W., Limbert, G. (2017) Skin Microstructure is a Key Contributor to Its Friction Behaviour. Tribology Letters 65, 12.
IF=3.327

[14] Lengiewicz, J., Kursa, M., Hołobut, P. (2017) Modular-robotic structures for scalable collective actuation, Robotica, 35 (4), pp. 787-808.
IF=1.509

[13] Holobut, P., Lengiewicz, J. (2017) Distributed computation of forces in modular-robotic ensembles as part of reconfiguration planning, IEEE International Conference on Robotics and Automation, pp. 2103-2109.
(rank B CORE conference)

[12] Hołobut P., Chodkiewicz P., Macios A., Lengiewicz J. (2016) Internal localization algorithm based on relative positions for cubic-lattice modular-robotic ensembles, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3056-3062.
(rank A CORE conference)

[11] Stupkiewicz, S., Lengiewicz, J., Sadowski, P., Kucharski, S. (2016) Finite deformation effects in soft elastohydrodynamic lubrication problems, Tribology International, 93, pp. 511-522.
IF=5.62

[10] Hołobut P., Kursa M., Lengiewicz J. (2015) Efficient modular-robotic structures to increase the force-to-weight ratio of scalable collective actuators, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.3302-3307.
(rank A CORE conference)

[9] Hołobut P., Kursa M., Lengiewicz J. (2014) A class of microstructures for scalable collective actuation of Programmable Matter, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3919-3925.
(rank A CORE conference)

[8] Stupkiewicz, S., Lewandowski, M.J., Lengiewicz, J. (2014) Micromechanical analysis of friction anisotropy in rough elastic contacts, International Journal of Solids and Structures, 51 (23-24), pp. 3931-3943.
IF=3.213

[7] Lengiewicz J., Wichrowski M., Stupkiewicz S. (2014) Mixed formulation and finite element treatment of the mass-conserving cavitation model, Tribology International, Vol.72, pp.143-155.
IF=5.62

[6] Lengiewicz, J., Stupkiewicz, S. (2013) Efficient model of evolution of wear in quasi-steady-state sliding contacts, Wear, 303 (1-2), pp. 611-621.
IF=4.695

[5] Lengiewicz J., Stupkiewicz S. (2012) Continuum framework for finite element modelling of finite wear, Computer Methods in Applied Mechanics and Engineering, Vol.205-208, pp.178-188.
IF=6.756

[4] Lengiewicz, J., Korelc, J., Stupkiewicz, S. (2011) Automation of finite element formulations for large deformation contact problems, Intern. Journal for Numerical Methods in Engineering, 85 (10), pp. 1252-1279.
IF=3.021

[3] Stupkiewicz S., Lengiewicz J., Korelc J. (2010) Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation, Computer Methods in Applied Mechanics and Engineering, Vol.199, No.33-36, pp.2165-2176.
IF=6.756

[2] Lengiewicz J., Stupkiewicz S., Korelc J., Rodic T. (2006) Analysis and simulation of contact problems, Lecture notes in applied and computational mechanics, Chapter: DDM-based sensitivity analysis and optimization for smooth contact formulations, Springer, Wriggers P., Nackenhorst U. (Eds.), 27, pp.79-86. [1] Korelc J., Lengiewicz J., Stupkiewicz S. (2006) Analysis and simulation of contact problems, Lecture notes in applied and computational mechanics, Chapter: A study of symbolic description, numerical efficiency and accuracy of 2D and 3D contact formulations, Springer, Wriggers P., Nackenhorst U. (Eds.), 27, pp.111-118.

[1] Korelc J., Lengiewicz J., Stupkiewicz S. (2006) Analysis and simulation of contact problems, Lecture notes in applied and computational mechanics, Chapter: A study of symbolic description, numerical efficiency and accuracy of 2D and 3D contact formulations, Springer, Wriggers P., Nackenhorst U. (Eds.), 27, pp.111-118.

Popular-science publications

[3] Sarah SCHÖTT (2021) Von Gestaltwandlern und fühlendem Material (On shapeshifters and sentient material), Wort.lu

[2] Lengiewicz J., Hołobut P. (2021) Artificial life of shape-shifters, Science in Poland (online)

[1] Lengiewicz J., Hołobut P. (2021) Sztuczne życie zmiennokształtnych, Nauka w Polsce (online)