

Dr Vladimir Despotović Bioinformatics & AI Unit Department of Medical Informatics Luxembourg Institute of Health vladimir.despotovic@lih.lu

Machine Learning Seminar

Al-driven digital pathology: A step towards precision medicine

Bioinformatics & Al Unit, Luxembourg Institute of Health

<section-header><section-header><section-header><complex-block><image>

Multiomics Data Science @ Department of Cancer Research

Bioinformatics

- Genomics
- Epigenomics
- Transcriptomics
- Proteomics
- Clinical data

AI

- Biomedical signal processing
- Medical image analysis

Digital (computational) pathology

- Field within pathology that involves the digitization of traditional glass slides, tissue samples, and other pathology specimens
- Whole-slide imaging (WSI) creates and analyses high-resolution, digital representations of histological slides and specimens

From tissue to Whole Slide Image (WSI)

Whole Slide Imaging

- Resolution up to 150 000 × 150 000 pixels
- Several gigabytes of storage space
- Processed in patches
- Typically 20× or 40× magnification
 - Lower magnification -> more context at lower resolution
 - High magnification -> small context at high resolution

AI in digital pathology

- Automatic clinical diagnosis
- Automating routine tasks that pathologists perform in daily practice
- Discovering new morphological biomarkers for clinical outcomes of interest
- Drug development

Song et al. Artificial intelligence for digital and computational pathology. Nat Rev Bioeng (2023)

AI in digital pathology

- Automatic clinical diagnosis
- Automating routine tasks that pathologists perform in daily practice
- Discovering new morphological biomarkers for clinical outcomes of interest
- Therapy and drug development

Supervised learning

• Requires patch level annotations

Multiple instance learning

• Only WSI level annotations, no patch level annotations

• Generalizability of out-of-domain image representations for a domain of histopathological images

In-domain transfer learning

• In-domain adaptation using self-supervised and multi-task learning approaches for pretraining the models

Problem

• Lack of annotated datasets of histopathological images

Problem

• Lack of annotated datasets of histopathological images

Solution

- Transfer knowledge from another domain where largescale data is available
- ImageNet dataset
 - Natural images classified into 1000 classes
- Pretrain the model on ImageNet and fine-tune on the target histopathological dataset
 - Low-level image features shared across domains

Problem

• Lack of annotated datasets of histopathological images

Solution

- Use domain-specific pretraining
- Large number of public (un)annotated small-size and medium-size datasets of histopathological images
 - Multiple origins
 - Different types of staining
 - Different resolution

Problem

• Lack of annotated datasets of histopathological images

Solution

Use domain-specific pretraining

- Large number of public (un)annotated small-size and medium-size datasets of histopathological images
 - Multiple origins
 - Different types of staining
 - Different resolution

Self-supervised learning

• Find a classification pretext task that does not require pathologist annotations

Problem

• Lack of annotated datasets of histopathological images

Solution

- Use domain-specific pretraining
- Large number of public (un)annotated small-size and medium-size datasets of histopathological images
 - Multiple origins
 - Different types of staining
 - Different resolution

Self-supervised learning

• Find a classification pretext task that does not require pathologist annotations

Multi-task learning

• Multiple classification tasks using multiple small-size annotated datasets

Self-supervised contrastive learning

- SimCLR, MoCo v3
- Pretraining on 57 unannotated datasets of histopathological images
- 22 organs
 - Breast, lymph, colon, bone, prostate, liver, pancreas, bladder, cervix, esophagus, head, neck, kidney, lung, thyroid, uterus, bone marrow, skin, brain, stomach, ovary
- Different types of staining
- Different resolution

Pretext task

- Create two stochastically augmented versions of the same patch
- Maximize the similarity between these two inputs
- Emphasize dissimilarity to all other patches

Backbone network

ResNet18, CNN+Swin-T

Pre-

13/31

Non-contrastive learning

- Pretrained on 2 unannotated datasets of histopathological images
 - TCGA: 30 072 WSIs, 25 organs
 - PAIP: 2457 WSIs, 6 organs
 - 32 cancer subtypes
 - Up to 15 million of unlabeled patches in total

Bootstrap Your Own Latent (BYOL)

- Train two networks on augmented views of an image
- Online network predicts target representation
- Target network is the exponential moving average of the parameters of the online network

Wang et al., TransPath: Transformer-Based Self-supervised Learning for Histopathological Image Classification, LNCS, Springer, 2021 14/31 Wang et al, Transformer-based unsupervised contrastive learning for histopathological image classification, Medical Image Analysis, 2022

Multi-task learning

- Pretraining on 22 annotated datasets of histopathological images
- 883k patches in total
- Multiple organs
 - Breast, lymph, colon, thyroid, lung, kidney, bone
- Backbone network
 - ResNet50
 - DenseNet121

15/31

Mormont et al., Multi-task pre-training of deep neural networks for digital pathology, IEEE journal of biomedical and health informatics, 2020

- Adult-type diffuse gliomas most common malignant tumors of the central nervous system
- Historically classified based on morphological characteristics
- Refinement of tumor classification based on molecular profiles

17/31

L

L

17/31

Data Preprocessing

- Regions of interest annotated by pathologist
- 512x512 patches sampled from the ROIs
- Image augmentation (training data)
 - Flipping and rotation (90°, 180°, 270°)

Class	Training data	Test data
IDH-mutant, non-codeleted (astrocytoma)	30040	465
IDH-mutant, $1p/19q$ codeleted (oligodendroglioma)	27072	431
IDH-wildtype (glioblastoma)	13064	241
Normal brain tissue	56291	2947
Necrosis	3112	90
Total	129579	4174

		Type of pretraining	Model	Balanced	Precision	Recall	$\mathbf{F1}$	
	Training from corotab			accuracy			score	
	Training from scratch		VGG16	85.07	83.29	85.07	82.53	
•	Fine-tuning		VGG19	85.00	83.75	85.00	84.34	
	The-tuning		ResNet18	88.22	79.12	88.22	82.38	C
	Classification head		ResNet50	78.18	79.49	78.18	78.14	ZZ
	classification field	No pretraining	InceptionV3	79.26	79.78	79.26	79.42	
	 Fully connected layers with 256 and 128 	p	MobileNetV2	84.54	85.20	84.54	84.59	
			DenseNet121	85.10	85.03	85.10	84.53	-
	neurons		ViT-B/16	68.25	54.62	68.25	60.09	rans
	ReLU activation		Swin-T	57.21	60.51	57.21	58.19	for
			ResNet50-ViT-B/16	81.02	78.34	81.02	77.22	ner
	 Dropout equal to 0.5 		VGG16	94.81	97.04	94.81	95.72	
	 Output fully connected layer with 		VGG19	93.94	94.19	93.94	93.75	
	and the second section of the second s		ResNet18	85.89	89.84	85.89	87.23	
	softmax activation		ResNet50	92.42	94.65	92.42	93.50	Z
	 AdamW optimizer 	Pretraining with ImageNet	InceptionV3	85.70	91.02	85.70	87.25	
		0 0	MobileNetV2	84.70	84.46	84.70	83.45	
	Weighted categorical cross-entropy loss		DenseNet121	88.97	92.46	88.97	90.26	4
	• Trained for max 10 epochs		ViT-B/16	92.38	93.90	92.38	92.98	ans.
			Swin-T	86.22	93.82	86.22	89.16	forn
	Learning rate reduced after 5 epochs		ResNet50-ViT-B/16	94.87	96.63	94.87	95.48	ne

19/31

	Type of pretraining	Model	Balanced	Precision	Recall	$\mathbf{F1}$
			accuracy			\mathbf{score}
learning		VGG16	94.81	97.04	94.81	95.72
		VGG19	93.94	94.19	93.94	93.75
	Pretraining with ImageNet	ResNet18	85.89	89.84	85.89	87.23
		ResNet50	92.42	94.65	92.42	93.50
		InceptionV3	85.70	91.02	85.70	87.25
		MobileNetV2	84.70	84.46	84.70	83.45
		DenseNet121	88.97	92.46	88.97	90.26
		ViT-B/16	92.38	93.90	92.38	92.98
		Swin-T	86.22	93.82	86.22	89.16
		ResNet50-ViT-B/16	94.87	96.63	94.87	95.48

	Type of pretraining	Model	Balanced	Precision	\mathbf{Recall}	$\mathbf{F1}$
_			accuracy			score
_		SimCLR (ResNet18)	91.57	91.25	91.57	90.60
	Self-supervised learning	BYOL (ResNet $50 + ViT-B/16$)	96.39	95.57	96.39	95.81
_		MoCo v3 (CNN + Swin-T)	93.45	94.65	93.45 93.4	93.45
	Multi-task learning	ResNet50	93.15	92.86	93.15	92.54
		DenseNet121	94.31	89.66	94.31	91.43

In-domain transfer

L

In-domain transfer learning

	Type of pretraining	Model	Balanced	Precision	\mathbf{Recall}	$\mathbf{F1}$
			accuracy			score
-		SimCLR (ResNet18)	91.57	91.25	91.57	90.60
	Self-supervised learning	BYOL (ResNet50 + ViT-B/16)	96.39	95.57	96.39	95.81
		MoCo v3 (CNN + Swin-T)	93.45	94.65	93.45	93.45
-	Martin and Income in a	ResNet50	93.15	92.86	93.15	90.60 95.81 93.45 92.54 91.43
	Multi-task learning	DenseNet121	94.31	89.66	94.31	91.43

	Type of pretraining	Model	Balanced	Precision	Recall	F1
			accuracy			score
		SimCLR (ResNet18)	96.55	95.27	96.55	95.62
	Self-supervised learning	BYOL (ResNet50 + ViT-B/16)	96.91	96.11	96.91	96.42
_		MoCo v3 (CNN + Swin-T)	96.56	97.03	96.56	96.58
	Multi tool looming	ResNet50	96.48	97.94	96.48	97.07
	Multi-task learning	DenseNet121	96.63	93.01	96.63	94.57

Tumor segmentation

Segmentation of diffuse gliomas in WSIs

- Overlay the predicted confidence scores for each patch on the WSI as a heatmap
- Draw the pathologist's attention to the most informative areas in the WSI corresponding to the tumor tissue

informative tiles

26/31

26/31

*Lu, M. Y., et al (2024). A visual-language foundation model for computational pathology. Nature Medicine.

 \mathbb{R}^2

Outlook

Multimodal fusion

- Integration of image embeddings with omics and clinical data
- Prediction of molecular profiles from WSIs

Vision – language models

- Interpretation of morphological features on WSIs
- Automatic generation of pathology reports

Challenges

- Only few works in digital pathology have made a clinical impact !
 - FDA approved one clinical-grade AI solution for prostate cancer detection (Paige Prostate)
 - Several solutions received CE marks in the European Union
 - Mindpeak Breast Ki-67 HS automated recognition and analysis of Ki-67 immunohistochemistry in breast cancer
 - DoMore Diagnostics Histotype Px Colorectal colorectal cancer detection
 - NIO Glioma Reveal identification of areas of cancer infiltration in patients with diffuse gliomas

Challenges

- Widespread adoption in clinical and pre-clinical settings remains a challenge
- Limitations
 - Dataset sizes are relatively small compared with the diversity within any given data
 - Biases due to different slide and staining procedures and equipment need to be mitigated
- Regulatory bodies do not having extensive experience with AI software

Department of Medical Informatics

Bioinformatics & AI Unit

Dr Petr Nazarov

Sang-Yoon Kim

National Center for Pathology

Dr Michel Mittelbronn

Dr Katrin

Frauenknecht

Dr Ann-Christin

Hau

Dr Felix Kleine Borgmann

Thank you for your attention!

Questions?

Dr Vladimir Despotović Bioinformatics & Al Unit Department of Medical Informatics Luxembourg Institute of Health vladimir.despotovic@lih.lu