
Multilevel and Domain
Decomposition Strategies for

Training Neural Networks

R. Krause1,2

S. Cruz1,2, A. Kopaničáková2,3, H. Kothari1, K. Trotti1, G. Karniadakis3

1 Euler Institute
Università della Svizzera italiana, Lugano

2 Faculty of Mathematics and Informatics
UniDistance Suisse, Brig

3 Brown University
Providence, Rhode Island

• Valiadation
• Data

Assimilation
• Optimization
• Parameter

Fitting

2

Model Based Simulation

Application

Mathematical
Model

Discrete
Model for
Simulation

Solution of
the Discrete

Model

Visualization
of the Results

Approximation and Solution separated

physics, biology,
chemistry

first principles

approximation: sequence
of finite dimensional subspaces

prescribe basis

(non-)linear equation in a finite
dimensional subspace
choose coefficients

• Valiadation
• Optimization

3

Machine Learning

Application

Data

Neural
Network

Training of
the

Network

Results

no physics, no biology,
no chemistry

no first principles

network shall learn
physics,

biology, chemistry, ...

approximation:
 unions of finite dimensional

subspaces
choose basis and coefficients

Approximation and Solution done simultaneously

First principles nevertheless needed
LEARNING RELU NETWORKS TO HIGH UNIFORM ACCURACY IS INTRACTABLE

Julius Berner, Philipp Grohs, and Felix Voigtlaender, ICLR 2023

In this paper we precisely quantify the number of training samples needed for
any conceivable training algorithm to guarantee a given uniform accuracy on any
learning problem formulated over target classes containing (or consisting of)
ReLU neural networks of a prescribed architecture.

We prove that, under very general assumptions, the minimal
number of training samples for this task scales exponentially both

in the depth and the input dimension of the network
architecture.

How to Fool a Neural Network

Deep Neural Networks are Easily Fooled:

High Confidence Predictions for Unrecognizable Images

Anh Nguyen
University of Wyoming
anguyen8@uwyo.edu

Jason Yosinski
Cornell University

yosinski@cs.cornell.edu

Jeff Clune
University of Wyoming
jeffclune@uwyo.edu

Full Citation: Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions
for Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.

Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [30] revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects,
which we call “fooling images” (more generally, fooling ex-
amples). Our results shed light on interesting differences
between human vision and current DNNs, and raise ques-
tions about the generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [2, 14]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[16, 7, 31, 17]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

A recent study revealed a major difference between DNN
and human vision [30]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static

1

ar
X

iv
:1

41
2.

18
97

v4
 [

cs
.C

V
]

2
A

pr
 2

01
5

Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable
Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.

Piecewise Linear Approximation
(ReLU) in High Dimensions

e e e

.

wu_

v C

~v
~v ...

...miningitems inthe.
' '
'
1 - "
1.

&

·

-7

-" j j

Training of a ReLU network

&

e
e e

--~ ~ · ... ir
C C

.

by
......

E

i-

iii
In

iii it neiP 1
..

IP

- -nee
-

↑

" " "
> > >

e e e

·

i . " E

i- ↳

·

C

xin
.......... intere

~ ~

intere
In

Incre
-

↓-
C

-

me-P

- - .
-

"
> num "

>

Only noise captured OverfittingBad generalization

Architecture and number of parameters heavily influence the approximation quality

Training takes time
Training of Deep Residual Networks

Convolutional ResNets (Hybrid regime)

Total computational cost of the TR and RMTR methods required for training convolutional

ResNets. The methods employ the L-SR1 scheme in order to approximate Hessian. The result

with the highest validation accuracy is selected from 10 independent runs.

A. Kopanicakova Multilevel minimization in trust-region framework 49

Fashion SVNH CIFAR 10

Università
della
Svizzera
italiana Introduction

Training problem

✓ := argmin✓ L(✓)

2

Properties of the minimization problem:

• The loss functional is typically non-convex with very rough energy landscape
• The cost of evaluating loss, and the 1st/2nd-order derivatives depends on

• The size and properties of the underlying dataset
• The properties of the model fm, i.e., number of parameters and network architecture

• The problem is severely more ill-conditioned, compared to standard machine-learning approaches,
rendering standard first-order optimization approaches ine↵ective

2Li et al., Visualizing the Loss Landscape of Neural Nets, Advances in neural information processing systems, 2018.
A. Kopaničáková et al. Enhancing Training of Scientific Machine Learning Applications 5

•Rough energy landscape

• Size and complexitiy of the dataset and size of the network heavily influence the
training speed

•Deep networks are highly expressive, i.e. can approximate any (sufficiently smooth)
function with arbitrary accuracy

• standard training methods are "slow" methods of classical optimization

Loss-functional Non Convex

Training is difficult
Università
della
Svizzera
italiana Introduction

Training problem

✓ := argmin✓ L(✓)

2

Properties of the minimization problem:

• The loss functional is typically non-convex with very rough energy landscape
• The cost of evaluating loss, and the 1st/2nd-order derivatives depends on

• The size and properties of the underlying dataset
• The properties of the model fm, i.e., number of parameters and network architecture

• The problem is severely more ill-conditioned, compared to standard machine-learning approaches,
rendering standard first-order optimization approaches ine↵ective

2Li et al., Visualizing the Loss Landscape of Neural Nets, Advances in neural information processing systems, 2018.
A. Kopaničáková et al. Enhancing Training of Scientific Machine Learning Applications 5

•Approximation error estimates for (deep) networks are available ("expressivity")

•But: merely existence results. We do not know, whether the network we have trained
actually is some best approximation

• Size of the network heavily influences the approximation quality

• Standard training tend to ignore high-frequency information in the data ("spectral
bias")

• Initialization of the weights is important

•Hyperparameter search costly

• Standard training methods are not parallel

•The mapping from weight space to the approximating function is not necessarily
continuous

• Inversely not stable: close networks -as approximating elements in function space- in
general do not have close weights [Petersen, Raslan, Voigttländer; 2020]

Improve and Control the Training Process

R. Pieters, Python for Image Understanding, 2015

Hierarchical basis
Multilevel basis

Deep neural networks
Sparse grids

Wavelets

Additive and Multiplicative Trust-Region Methods

Nonlinear Domain Decomposition Scheme

R. Krause (Università della Svizzera italiana) Nonlinear Domain Decomposition Methods 18

Multilevel Minimization

Parallel Minimization

Introduction
Università
della
Svizzera
italiana

Partial-di↵erential equations and physics-informed neural networks
1

Given ⌦⇥ (0, T], find u : ⌦⇥ (0, T]! R, such that

P(u) = f(x), in ⌦⇥ (0, T],

u = uIC, at ⌦⇥ {0},

u = uBC, on @⌦⇥ (0, T],

where P denotes a nonlinear operator

Goal: Approximate solution u(x, t) using neural network,
i.e., u(x, t) ⇡ uNN = DNN(✓;x, t)

x1

x2

t

uNN

1Raissi et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial di↵erential equations, Journal of Computational physics, 2019
R. Krause Decomposing Neural Networks 3

Introduction
Università
della
Svizzera
italiana

PINNs

Loss functional

L(✓) :=
1

|Dint|
X

(xj ,tj)2Dint

|R
�
u✓(xj , tj)

�
|2

| {z }
Interior loss

+
1

|DBC|
X

(xj ,tj)2DBC

|u✓(xj , tj)� uBC|2

| {z }
Boundary loss

+
1

|DIC|
X

xj2DIC

|u✓(xj , 0)� uIC|2

| {z }
Initial-condition loss

Error

E := kuNN � uk  kuNN � uoptk| {z }
Optimization error

+ kuopt � uhk| {z }
Network’s approximation error

+ kuh � uk| {z }
Discretization error

• Discretization error - determined by the number/locations of collocation points

• Network’s approximation error - determined by the network architecture

• Optimization error - determined by the choice of optimizer

R. Krause Decomposing Neural Networks 4

Nonlinearly preconditioned training
Università
della
Svizzera
italiana

Nonlinear preconditioning framework
3
,
4

• Consider the framework of nonlinear system of equations

F (✓) := rL(✓) = 0

• Instead of solving F (✓) = 0, our goal is to construct and solve a nonlinearly preconditioned system
of equations

H(✓) = F (G(✓)) = 0

where G(✓) is an outcome of local solution process, i.e.,
• G(✓) provides an improved initial iterate for the next optimization step
• F (G(✓)) can be seen as composite multiplicative preconditioner

3Brune et al., Composing scalable nonlinear algebraic solvers, SIAM Review, 2015
4Dolean et al., Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition Newton’s Method,

SIAM SISC. 2016
R. Krause Decomposing Neural Networks 6

Nonlinearly preconditioned training
Università
della
Svizzera
italiana

Decomposition of DNN

xj1

xj2

ũNN(·, xj)

Example of the horizontal decomposition of network.

• Decompose the network into S subnetworks
• Transfer operators

• Restriction operator Rs : Rn ! Rns extracts the parameters associated with subdomain s, i.e.,

✓s = Rs✓, for s = 1, . . . , S

• Extension operator Es : Rns ! Rn extends quantities related to subdomain s to the whole DNN, i.e.,

✓ =
SX

s=1

Es✓s

R. Krause Decomposing Neural Networks 7

Nonlinearly preconditioned training
Università
della
Svizzera
italiana

Local solves

xj1

xj2

ũNN(·,xj)

• Let Gs : Rn
! Rns be a local solution operator for 1  s  S, such that

F

✓ SX

s=1

EsGs(Rs✓|{z}
:=✓s

)

◆
= 0,

• This corresponds to minimizing L wrt. ✓s, thus

✓⇤
s = argmin✓s

L(✓1, . . . ,✓s, . . . ,✓S),

where ✓ = [✓1, . . . ,✓s, . . . ,✓S]>, while parameters of all other subdomains are kept fixed
R. Krause Decomposing Neural Networks 8

Nonlinearly preconditioned training
Università
della
Svizzera
italiana

Training of subnetworks

xj1

xj2

ũNN(·, xj)
xj1

xj2

ũNN(·, xj)
xj1

xj2

ũNN(·, xj)

xj1

xj2

ũNN(·, xj)

R1◊(k) + –E1(◊ú
1 ≠ R1◊(k)) R2◊(k) + –E2(◊ú

2 ≠ R2◊(k)) R3◊(k) + –E3(◊ú
3 ≠ R3◊(k))

A sketch of local-to-global updates utilized by the ASPQN

• update global parameters: G(✓(k)) = ✓(k) + ↵(k)
PNsd

s=1 Es(✓⇤
s �Rs✓(k))

where ✓⇤
s represents a solution of the local minimization problem obtained in additive or

multiplicative manner, associated with s-th subnetwork, while ↵(k) denotes a step-size.
R. Krause Decomposing Neural Networks 9

Nonlinearly preconditioned training
Università
della
Svizzera
italiana

Right preconditioned L-BFGS

• Update from the subnetworks

✓(k+1/2) = G(✓(k)) = ✓(k) + ↵(k)
NsdX

s=1

Es(✓
⇤
s �Rs✓

(k))

• Given memory of m secant pairs {s(i),y(i)
}
k�1
i=k�m, L-BFGS Hessian approximation is given as

B(k+1) = B(0)
�
⇥
B(0)S(k) Y (k)

⇤ 
(S(k))>B(0)S(k) L(k)

(L(k))> �D(k)

��1 
(S(k))>B(0)

(Y (k))>

�
,

where (S(k))>Y (k) = L(k) +D(k) +U (k) and B(0) = �I, with � = hy(k),y(k)i
hy(k),s(k)i

• Matrices S(k),Y (k)
2 Rm⇥n contain corrections and gradient displacements obtained as

s(k) = ✓(k+1)
� ✓(k+1/2)

y(k) = rL(✓(k+1))�rL(✓(k+1/2))

R. Krause Decomposing Neural Networks 10

Nonlinearly preconditioned training
Università
della
Svizzera
italiana

Pseudo-algorithm

1 For a given ✓(k), perform local step:
• training on subnetworks in an additive manner (parallel)

Find ✓⇤
s = argmin✓s

L(✓(k)
1 , . . . ,✓s, . . . ,✓

(k)
S)

• training on subnetworks in a multiplicative manner (sequential)

Find ✓⇤
s = argmin✓s

L(✓⇤
1 , . . . ,✓

⇤
s�1,✓s,✓

(k)
s+1, . . . ,✓

(k)
S)

2 Synchronization step ✓(k+1/2)
 [✓(k) +

PS
s=1 Es(Rs✓(k)

� ✓⇤
s)

3 Preconditioned quasi-Newton step p(k+1/2)
 [�(B(k+1))�1

rL(✓(k+1/2))

4 Momentum update v(k+1/2)
 [(1� µ)v(k�1/2) + µp(k+1/2)

5 Global update using momentum step ✓(k+1)
 [✓(k+1/2) + ↵(k+1/2)v(k+1/2)

6 Update S(k) with s(k) [✓(k+1)
� ✓(k+1/2)

7 Update Y (k) with y(k)
 [rL(✓(k+1))�rL(✓(k+1/2))

R. Krause Decomposing Neural Networks 11

Numerical Experiments
Università
della
Svizzera
italiana

Klein-Gordon Equation (Nonlinear second-order hyperbolic PDE)

@2u

@t2
+ ↵r2u+ �u+ �u2 = f(t, x), 8 (t, x) 2 (0, 12]⇥ (�1, 1),

u = x, 8 (t, x) 2 {0}⇥ [�1, 1],

@u

@t
= 0, 8 (t, x) 2 {0}⇥ [�1, 1],

u = � cos(t), 8 (t, x) 2 (0, 12]⇥ {�1},

u = cos(t), 8 (t, x) 2 (0, 12]⇥ {1},

We employ ↵ = �1,� = 0, � = 1 and f(t, x) := �x cos(t) + x2 cos2(t).
R. Krause Decomposing Neural Networks 12

Numerical Experiments
Università
della
Svizzera
italiana

Burgers’ equation

@u

@t
+ uru� ⌫r2u = 0, 8 (t, x) 2 (0, 1]⇥ (�1, 1),

u = � sin(⇡x), 8 (t, x) 2 {0}⇥ [�1, 1],

u = 0, 8 (t, x) 2 (0, 1]⇥ {1},

u = 0, 8 (t, x) 2 (0, 1]⇥ {�1},

where ⌫ = 0.01/⇡.
R. Krause Decomposing Neural Networks 13

Numerical Experiments
Università
della
Svizzera
italiana

Di↵usion-Transport equation

�r · µru+ b ·ru = f, 8 (x1, x2) 2 (0, 1)⇥ (0, 1),

u = 0, on @⌦,

where b = (1, 1)>, f = 1 and µ = 10�2.
R. Krause Decomposing Neural Networks 14

Numerical Experiments
Università
della
Svizzera
italiana

Network architecture and optimizer setup

Klein-Gordon:

• 6 hidden layers, 50 neurons each

• 10, 000 collocation points

Burgers’:

• 8 hidden layers, 20 neurons each

• 10, 000 collocation points

Transport-Di↵usion:

• 10 hidden layers, 50 neurons each

• 10, 000 collocation points

State-of-the-art optimizers:

• Adam with fixed learning rate

• L-BFGS with momentum, line-search and memory size,
m = 3

Right preconditioned L-BFGS setup:

• L-BFGS as a local optimizer with varying number of
steps

• Global step performed by preconditioned L-BFGS with
line-search

• Varying number of subdomains and memory size,
m = 3

Implementation

• PyTorch library

• Nvidia’s NCCL backend

R. Krause Decomposing Neural Networks 15

Performance of the right preconditioned L-BFGS method
Università
della
Svizzera
italiana

Klein-Gordon: ASPQN v/s MSPQN (# iterations)

0 5 10 15

·102

10�5

10�4

10�3

10�2

10�1

ks = 10

L
(✓

)/
E
re
l

0 1 2 3

·102ks = 50

0 0.5 1 1.5

·102ks = 100

0 5 10 15

·102

10�5

10�4

10�3

10�2

10�1

ks = 10

L
(✓

)/
E
re
l

0 1 2 3

·102ks = 50

0 0.5 1 1.5

·102ks = 100

Nsd Erel L(✓)

2

3

6

ASPQN

Nsd Erel L(✓)

2

3

6

MSPQN

R. Krause Decomposing Neural Networks 16

Performance of the right preconditioned L-BFGS method
Università
della
Svizzera
italiana

Klein-Gordon: ASPQN v/s MSPQN (Grad evals (# ge) and Update Cost)

0 1 2 3

·104

10�4

10�3

10�2

10�1

ks = 10

E
re
l

0 1 2 3

·104ks = 50

0 1 2 3

·104ks = 100

0 1 2 3

·104

10�4

10�3

10�2

10�1

ks = 10

E
re
l

0 1 2 3

·104ks = 50

0 1 2 3

·104ks = 100

Nsd #ge UC

2

3

6

ASPQN

Nsd #ge UC

2

3

6

MSPQN

R. Krause Decomposing Neural Networks 17

Performance of the right preconditioned L-BFGS method
Università
della
Svizzera
italiana

Burgers’: ASPQN v/s MSPQN (# iterations)

0 1 2 3 44 5

·103

10�5

10�4

10�3

10�2

10�1

ks = 10

L
(✓

)/
E
re
l

0 5 10

·102ks = 50

0 1 2 3 4 5

·102ks = 100

0 1 2 3 44 5

·103

10�5

10�4

10�3

10�2

10�1

ks = 10

L
(✓

)/
E
re
l

0 5 10

·102ks = 50

0 1 2 3 4 5

·102ks = 100

Nsd Erel L(✓)

2

4

8

ASPQN

Nsd Erel L(✓)

2

4

8

MSPQN

R. Krause Decomposing Neural Networks 18

Performance of the right preconditioned L-BFGS method
Università
della
Svizzera
italiana

Burgers’: ASPQN v/s MSPQN (Grad evals (# ge) and Update Cost)

0 1 2 3

·105

10�4

10�3

10�2

ks = 10

E
re
l

0 1 2 3

·105ks = 50

0 1 2 3

·105ks = 100

0 1 2 3

·105

10�4

10�3

10�2

ks = 10

E
re
l

0 1 2 3

·105ks = 50

0 1 2 3

·105ks = 100

Nsd #ge UC

2

4

8

ASPQN

Nsd #ge UC

2

4

8

MSPQN

R. Krause Decomposing Neural Networks 19

Performance of the right preconditioned L-BFGS method
Università
della
Svizzera
italiana

Transport: ASPQN v/s MSPQN (#iterations)

0 0.2 0.4 0.6 0.8 1

·103

10�3

10�2

10�1

100

ks = 10

L
(✓

)/
E
re
l

0 0.5 1 1.5 2

·102ks = 50

0 0.5 1 1.5 2

·102ks = 100

0 0.2 0.4 0.6 0.8 1

·103

10�3

10�2

10�1

100

ks = 10

L
(✓

)/
E
re
l

0 0.5 1 1.5 2

·102ks = 50

0 0.5 1 1.5 2

·102ks = 100

Nsd Erel L(✓)

2

5

10

ASPQN

Nsd Erel L(✓)

2

5

10

MSPQN

R. Krause Decomposing Neural Networks 20

Performance of the right preconditioned L-BFGS method
Università
della
Svizzera
italiana

Transport: ASPQN v/s MSPQN (Grad evals (# ge) and Update Cost)

0 1 2 3 4 5

·104

10�2

10�1

100

ks = 10

E
re
l

0 1 2 3 4 5

·104ks = 50

0 1 2 3 4 5

·104ks = 100

0 1 2 3 4 5

·104

10�2

10�1

100

ks = 10

E
re
l

0 1 2 3 4 5

·104ks = 50

0 1 2 3 4 5

·104ks = 100

Nsd #ge UC

2

5

10

ASPQN

Nsd #ge UC

2

5

10

MSPQN

R. Krause Decomposing Neural Networks 21

Performance of the right preconditioned L-BFGS method
Università
della
Svizzera
italiana

Comparing computational time

0 0.2 0.4 0.6 0.8 1

·104

10�4

10�3

10�2

10�1

100

time (s)

E
re
l

Klein-Gordon

0 2 4 6 8 10

·103

10�4

10�3

10�2

10�1

time (s)

Burgers’

0 2 4 6 8

·103

10�2

10�1

100

time (s)

Transport-Di↵usion

LBFGS ADAM ASPQN MSPQN

Example Erel (L-BFGS)
Time to solution (mins)

L-BFGS Adam ASPQN (# nodes) MSPQN

Burgers’ 4.6⇥ 10�4 558.5 – 14.4 (8) 40.7
Klein-Gordon 6.1⇥ 10�4 236.5 – 6.8 (6) 26.9

R. Krause Decomposing Neural Networks 22

Università
della
Svizzera
italiana Introduction

Line-search framework
✓k+1 = ✓k + ↵ksk

Batch methods:

• Construct sk using all samples, e.g.

sk = �
1

p

pX

j=1

r`(fm(xj ,✓), cj)

• Iteration cost is linear in p

• Convergence with constant ↵k or ↵k which
is adaptively chosen via line-search

Stochastic methods: 2

• Construct sk using a sample, e.g.

sk = �r`jk(fm(xj ,✓), cj),

where jk from {1, . . . , p}

• With prob(jk = j), the SG is an unbiased
estimate of gradient, i.e., E[r`jk(✓)] = rL(✓)

• Iteration cost is independent of p

• Convergence requires ↵k ! 0
2Schmidt, CPSC 540: Machine learning. Lecture notes on stochastic gradient, 2018.

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 5

Università
della
Svizzera
italiana Introduction

Batch trust-region (TR) framework [Conn et al., ’00,. . .]

1 Generate the model mk(sk) := Lk + hgk, ski+
1
2 hsk,Bkski

2

Solve TR subproblem

min
sk2Rn

mk(sk)

subject to kskkp  �k

�2
�1

contours of mk
sk1

sk2

3 Acceptance: ⇢ = L(✓k+sk)�L(✓k)
mk(sk)

� ⌘ then ✓k+1 = ✓k + sk,

otherwise ✓k+1 = ✓k, ⌘ 2 (0, 1)

4 Update of the trust-region radius: �k by means of ⇢
No user-specified learning rate

needed!

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 6

Università
della
Svizzera
italiana Introduction

Stochastic trust-region (TR) framework
1 Generate the model
mk(sk) := Lk + hgk, ski+

1
2 hsk,Bkski

2 Solve TR subproblem

min
sk2Rn

mk(sk)

subject to kskkp  �k

3 Acceptance: ⇢ = L(✓k+sk)�L(✓k)
mk(sk)

� ⌘
then ✓k+1 = ✓k + sk,

otherwise ✓k+1 = ✓k, ⌘ 2 (0, 1)

4 Update of the trust-region radius: �k by
means of ⇢

• Evaluate L and gk exactly, while sub-sample

Bk
[Xu et al., ’20, ’21 . . .]

• Evaluate L exactly, but use sub-sampled

information for evaluation of gk and Bk
[Gratton et al., ’18, Erway et al., ’20,. . .]

• Use subsampled information to evaluate

L, gk and Bk
[Bellavia et al., ’18, Blanchet et al., ’19,

Chen et al., ’15, Mohr et al., ’19,. . .]

• Decrease in mini-batch loss does not

imply decrease in global loss

=) to preserve global convergence
L, gk have to be estimated with
increasing accuracy, e.g., by
enlarging the sample sizes

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 7

Università
della
Svizzera
italiana Nonlinear multilevel minimization techniques

Nonlinear multilevel minimization techniques

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 8

Università
della
Svizzera
italiana Nonlinear multilevel minimization techniques

Nonlinear multilevel minimization methods

Nonlinear
solve

Nonlinear
smoothing

Nonlinear
smoothing

• Commonly used in numerics to solve PDEs as they are of optimal
complexity and scalability

• An extension to linear multigrid [Briggs et al., ’00; Hackbusch ’13;. . .]

• Solving system of eqs. arising from discretization of PDEs:
• FAS

[Brandt ’77]
, NLMG

[Hackbusch ’85; Reusken et al., ’87, ’88]
,

MNM
[Yavneh, Dardyk ’06]

,. . .

• Nonlinear optimization perspective:
• Line-search: MG/OPT

[Nash ’00]
, LSMM

[Wen, Goldfarb ’08]
,

MMOP
[Borzi, Schultz ’09]

, CSML
[Frandi, Papini ’14]

,

SDM
[Ta, Xu ’98 ’02; Chen et al., ’19]

, NeMO
[He et al., ’22]

,. . .
• Trust-region: RMTR

[Gratton et al., ’06 ’08 ’10; Gross et al., ’09]
,

AMRTR
[Ulbrich, Ziems ’11 ’17]

, PODRMTR
[Kragel ’05]

,. . .
• Cubic/higher order regularization: MARq

[Calandra et al., ’19]

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 9

Università
della
Svizzera
italiana Nonlinear multilevel minimization techniques

Nonlinear multilevel minimization framework

1. Construction of a hierarchy of auxiliary ”low-cost” objective functions {Ll
}
L
l=1,

where L
l is computationally cheaper to minimize than L

l+1

2. Transfer operators {Il+1
l }

L�1
l=1 , {R

l
l+1}

L�1
l=1 , {P

l
l+1}

L�1
l=1

• Actual form of the transfer operators depends on the structure and the dimension of {Ll}Ll=1• We consider three types:

• Prolongation operator Il+1
l : Rnl ! Rnl+1

for transferring primal variables

• Restriction operator Rl
l+1 : Rnl+1 ! Rnl

, where Rl
l+1 := (Il+1

l)T , for transferring dual variables

• Projection operator Pl
l+1 : Rnl+1 ! Rnl

for transferring primal variables

3. Convergence control
• Constructing the coarse level models, which are at least first-order consistent with fine-level model

• Employing globalization strategy to ensure a convergence

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 10

Università
della
Svizzera
italiana Nonlinear multilevel minimization techniques

Construction of coarse-level models
1st-order additive approach[Brandt ’77; Nash ’00;. . .]

hl(✓l) := L
l(✓l)| {z }

low-cost model

+ h�gl, sli| {z }
correction term

where

�gl :=

(
Rl

l+1rh
l+1(✓l+1

µ1
)�rLl(✓l

0), if l < L,

0, otherwise,

• First coarse-level correction sl goes in the direction of the restricted fine-level gradient

• If sl is descent direction on level l =) descent direction on level l + 1

hrhl(✓l
0), s

l
i = hRl

l+1rh
l+1(✓l+1

µ1
), sli = hrhl+1(✓l+1

µ1
), Il+1

l sli

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 11

Università
della
Svizzera
italiana Nonlinear multilevel minimization techniques

Convergence control

Nonlinear
solve

Nonlinear
smoothing

Nonlinear
smoothing

Convergence
control

Line-search
• Employ globally convergent optimizer (LS

method) on each level

• Find ↵l+1, such that

hl+1(✓l+1
µ1

+ ↵l+1Il+1
l sl⇤) < hl+1(✓l+1

µ1
)

Trust-region
• Employ globally convergent optimizer
(TR method) on each level

• Preserve fine-level TR constraint, i.e.,
kIl+1

l sl⇤kp  �l+1
µ1

• Accept Il+1
l sl⇤ only if ⇢l+1

µ1+1 � ⌘, where
⌘ > 0 and

⇢l+1
µ1+1 =

hl+1(✓l+1
µ1

)� hl+1(✓l+1
µ1

+ Il+1
l sl⇤)

hl(Pl
l+1✓

l+1
µ1)� hl(✓l

⇤)

=
fine-level decrease

coarse-level decrease

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 12

Università
della
Svizzera
italiana Multilevel variance reduction methods

Construction of multilevel hierarchy and transfer operators by exploring
finite-sum structure of the loss function

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 13

Università
della
Svizzera
italiana Multilevel variance reduction methods

Multilevel variance reduction (MLVR) method
Low-cost models:

• Construction of multilevel hierarchy
by coarsening in number of samples

=
)

hierarchy of datasets:

|D
1
|  · · ·  |D

L
| := |D|

Transfer operators:

• Parameter space remains same

=
)

Transfer operators are identity!

D
3 := D

D
2
⇢ D

D
1
⇢ D

L :=
1

|D|

|D|X

j=1

`
�
fm(xj ,✓), cj

�

L
2 :=

1

|D2|

|D2|X

j=1

`
�
fm(xj ,✓), cj

�

L
1 :=

1

|D1|

|D1|X

j=1

`
�
fm(xj ,✓), cj

�

• Di↵erent choice of {Dl
}
L
l=1, coarse-level models and

level optimizers give rise to novel as well as existing
algorithms, e.g., SSN[Bollapragada et al., ’18],
SVRG[Johnson et al, ’13], SPIDER[Fang et al., ’18], ...

=) allows for theoretical analysis of multiple
methods using one algorithmic framework

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 14

Università
della
Svizzera
italiana Multilevel variance reduction methods

Example: Subsampled Newton as a special case of two level MLVR method

Construction of coarse-level models (1st-order additive approach) - two level settings:

h1(✓) :=L
1(✓) + hRrL(✓̃)�rL1(P ✓̃)| {z }

�g1

, s1i,

:=
1

|D1|

X

j2D1

`
�
fm(xj ,✓), cj

�
+

⌧
1

|D|

X

j2D

r`
�
fm(xj , ✓̃), cj

�
�

1

|D1|

X

j2D1

r`
�
fm(xj , ✓̃), cj

�

| {z }
�g1

, s1
�

• ✓̃ := ✓2
µ1

:= ✓1
0 is the initial guess on coarse level (l = 1), i.e. projected iterate from the fine level

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 15

Università
della
Svizzera
italiana Multilevel variance reduction methods

Example: Subsampled Newton as a special case of two level MLVR method

D 0 steps

D
1
⇢ D 1 Newton step

0 steps

h1(✓) :=
1

|D1|

X

j2D1

`
�
fm(xj ,✓), cj

�
+

⌧
1

|D|

X

j2D

r`
�
fm(xj , ✓̃), cj

�
�

1

|D1|

X

j2D1

r`
�
fm(xj , ✓̃), cj

�
, s1

�

The V-cycle of MLVR method then produces the following update rule

✓̃ [✓̃ + I(�↵
�
r

2h1(P ✓̃)
��1
rh1(P ✓̃))

✓̃ [✓̃ � ↵

✓
1

|D1|

X

j2D1

r
2`
�
fm(xj , ✓̃), cj

�

| {z }
Subsampled Hessian

◆�1 1

|D|

X

j2D

r`
�
fm(xj , ✓̃), cj

�

| {z }
Full gradient

,

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 16

Università
della
Svizzera
italiana Multilevel variance reduction methods

MLVR - traditional MG configuration and line-search globalization strategy

D

D
2
⇢ D

D
1
⇢ D

2

µ1 smoothing steps

µ1 smoothing steps

1 Newton step

`2-regularized logistic loss:

L(✓) :=
1

p

pX

j=1

log
�
1 + e�cj(✓

Txj)
�
+

�

2
k✓k2

Training error, L(✓)� L(✓⇤), with respect to e↵ective gradient evaluations for SVRG, SARAH, sub-sampled Newton (SSN), two and three
level variants of MLVR method (MLVR2, MLVR3).

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 17

Università
della
Svizzera
italiana Multilevel variance reduction methods

ASTROM - Adaptive Sub-sampled Trust-RegiOn Method

• Employ trust-region globalization strategy

• Recall, quality of the coarse-level correction sl⇤ is measured by means of ⇢l+1
µ1+1, where

⇢l+1
µ1+1 =

hl+1(✓̃)� hl+1(✓̃ + sl⇤)

hl(✓̃)� hl(✓̃ + sl⇤)
=

fine-level decrease

coarse-level decrease

• Utilize ⇢l+1
µ1+1 to dynamically adapt coarse-level approximation, i.e. Ll

• If ⇢l+1
µ1+1 > ⌘1, accept coarse level correction, keep the dataset D

l
as is

• If ⇢l+1
µ1+1  ⌘1, reject coarse level correction, increase number of samples in the dataset D

l

• As the iterative process progresses, ASTROM becomes batch TR

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 19

Università
della
Svizzera
italiana Multilevel variance reduction methods

ASTROM (2 levels) - typical convergence behavior

0 5 10 15 20 25 30
10�11

10�6

10�1

104

V-cycles/iterations

kr
L
k

0

0.33

0.67

1

|D1|
|D|

krLk
|D1|
|D|

Convergence history of ASTROM method for the logistic regression example with the australian dataset. An initial number of samples on
coarse level equals to 2% of the whole dataset D.

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 20

Università
della
Svizzera
italiana Multilevel variance reduction methods

ASTROM (2 levels) vs. SSN vs. Batch TR (Gissette dataset)

Method TR ASTROM SSN (lr)

|D1|/|D| 100% 1% 10% 25% 50% 1% (0.075) 10% (0.1) 25% (0.5) 50% (0.75)

iterations 16 31 16 14 13 190 143 23 21
#rL evals 16 32 24 24 29 190 143 23 21

#r2L evals 16 5.9 10.1 12.4 14.8 1.9 14.3 5.75 11.5
CG iters. 148 47.2 108.3 125.2 134.9 1, 900 1, 430 230 210

Convergence history of ASTROM, TR, SSN methods for logistic regression example with Gissette dataset.

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 21

Università
della
Svizzera
italiana Multilevel training of ResNets

Construction of multilevel hierarchy and transfer operators by exploring
structure of the DNN architecture

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 22

Università
della
Svizzera
italiana Multilevel training of ResNets

ResNets and multilevel methods [He et al., ’15; He et al., ’16]

yk

F
�
yk,✓k

�

yk+1

F
�
yk+1,✓k+1

�

yk+2

F
�
yk+2,✓k+2

�

yk+3

F
�
yk+3,✓k+3

�

yk+4+ + + +.

• Forward propagation:

yk+1 = yk + F(yk,✓k), k 2 {0, . . . ,K � 1},

y0 = Qx,

• Example of resid. block:
F(yk,✓k) := �(Wkyk + bk)

+ + + +.

+ +.

A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 23

Università
della
Svizzera
italiana Multilevel training of ResNets

Numerical Results - Convolutional ResNets 3

3Kopaničáková A., Krause R., Globally Convergent Multilevel Training of Deep Residual Networks, SIAM Journal on
Scientific Computing, 2022.
A. Kopaničáková et al. Multiscale Training Algorithms for Deep Neural Networks 24

Parallelization via domain decomposition
Università
della
Svizzera
italiana

Distributed learning by parallelizing in samples

Mini-batch Db

D
1
b D

2
b

. . . D
np

b

• Explore the fact that the arising minimization problems have finite
sum form, i.e.,

min
✓2Rd

L(✓,D) =
1

|D|

X

j2D
`j(✓)

• Evaluation of objective and derivatives can be performed
independently for subsets of the dataset

• Larger mini-batches allows to explore more resources, but hinders the
generalization properties of the SGD[Zinkevich et al., ’10, Shallue et al., ’19]

• A synchronization step is necessary after each gradient evaluation
• Hyper-parameter search required for learning rate

A. Kopaničáková, S. Cruz, R. Krause Multilevel Training Methods 40

Parallelization via domain decomposition
Università
della
Svizzera
italiana

Additive preconditioned trust-region method
(APTS)[Gross, Krause ’09]

Mini-batch Db

S
1
b O

1
b

O
1
b S

2
b O

2
b

. . .

O
np�1
b

S
np

b O
np

b

D
1
b

D
2
b D

np

b

• Subdomains are created by decomposing the current mini-batch into
np smaller chunks/sub-domains

=) suitable for any type of DNN architecture

• Non-overlapping decomposition, i.e.,
Db := [

np

p=1S
p

b
, where S

p

b
⇢ Db, Si

b
\ S

j

b
= ;, for i 6= j

• Overlap can be constructed by repeated sampling

A. Kopaničáková, S. Cruz, R. Krause Multilevel Training Methods 42

Parallelization via domain decomposition
Università
della
Svizzera
italiana

APTS method
Trust-region based convergence control:

• The mini-batch correction sb is obtained by summing across all
sub-domains, i.e.,

sb =
Pnp

p=1 s
p

b

• The number of subdomain steps and the size of the sub-domain
corrections is controlled such that ksbk  �b

• The mini-batch correction sb has to provide a decrease in the
mini-batch objective function, i.e., acceptance only if ⇢b > ⌘, where

⇢b =
L(✓0,Db)�L(✓0+sb,Db)Pnp

p=1

�
h(✓0,D

p
b)�h(✓0+spb ,D

p
b)
� = mini-batch decrease

sum of sub-domain descreases

where h are sub-domain objective functions constructed using the
first-order consistency approach

A. Kopaničáková, S. Cruz, R. Krause Multilevel Training Methods 43

Università della Svizzera italiana
Euler institute

APTS in Weights

• Dotted lines are min/max accuracy or loss
• Order (o) of Taylor expansion

MNIST full dataset, 10 runs.

• World size (ws): number of processes/nodes/submodel
• Overlap (ol): ol% between all mini-batches

Small

Large

Varying network size

-

-

Università della Svizzera italiana
Euler institute

3

APTS in Weights MNIST mbs=10K, 10 runs.

• Dotted lines are min/max accuracy or loss
• Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel
• Overlap (ol): ol% between all mini-batches

OL 1%

OL 5%

Small network, varying overlap

Università della Svizzera italiana
Euler institute

APTS in Weights CIFAR full dataset, 10 runs.

Order 1

Order 2

• Dotted lines are min/max accuracy or loss
• Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel
• Overlap (ol): ol% between all mini-batches

Small network, varying order

Università della Svizzera italiana
Euler institute

5

Order 1

Order 2

APTS in Weights CIFAR mbs=10K, 10 runs.

• Dotted lines are min/max accuracy or loss
• Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel
• Overlap (ol): ol% between all mini-batches

Small network, varying order

Università della Svizzera italiana
Euler institute

6

APTS in Weights Influence of global convergence
control

• Dotted lines are min/max accuracy or loss
• Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel
• Overlap (ol): ol% between all mini-batches

Università della Svizzera italiana
Euler institute

7

Small

Large

APTS in Data MNIST full dataset, 10 runs.

• Dotted lines are min/max accuracy or loss
• Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel
• Overlap (ol): ol% between all mini-batches

Varying network size

Università della Svizzera italiana
Euler institute

8

• Dotted lines are min/max accuracy or loss
• Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel
• Overlap (ol): ol% between all mini-batches

APTS in Data MNIST mbs=10K, 10 runs.

OL 1%

OL 5%

Small network, varying overlap

