

Multilevel and Domain Decomposition Strategies for Training Neural Networks

R. Krause^{1,2}

S. Cruz^{1,2}, A. Kopaničáková^{2,3}, H. Kothari¹, K. Trotti¹, G. Karniadakis³

1 Euler Institute Università della Svizzera italiana, Lugano

2 Faculty of Mathematics and Informatics UniDistance Suisse, Brig

> 3 Brown University Providence, Rhode Island

Model Based Simulation

Approximation and Solution separated

Machine Learning

Approximation and Solution done simultaneously

First principles nevertheless needed

LEARNING RELU NETWORKS TO HIGH UNIFORM ACCURACY IS INTRACTABLE Julius Berner, Philipp Grohs, and Felix Voigtlaender, ICLR 2023

In this paper we precisely quantify the number of training samples needed for any conceivable training algorithm to guarantee a given uniform accuracy on any learning problem formulated over target classes containing (or consisting of) ReLU neural networks of a prescribed architecture.

We prove that, under very general assumptions, the minimal number of training samples for this task scales exponentially both in the depth and the input dimension of the network architecture.

How to Fool a Neural Network

Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR '15), IEEE, 2015.

Piecewise Linear Approximation (ReLU) in High Dimensions

Training of a ReLU network

Architecture and number of parameters heavily influence the approximation quality

Training takes time

- Rough energy landscape
- Size and complexitiy of the dataset and size of the network heavily influence the training speed
- Deep networks are highly expressive, i.e. can approximate any (sufficiently smooth) function with arbitrary accuracy
- standard training methods are "slow" methods of classical optimization

Training is difficult

 $\boldsymbol{\theta} := \operatorname{argmin}_{\boldsymbol{\theta}} \ \mathcal{L}(\boldsymbol{\theta})$

- But: merely existence results. We do not know, whether the network we have trained actually is some best approximation
- Size of the network heavily influences the approximation quality
- Standard training tend to ignore high-frequency information in the data ("spectral bias")
- Initialization of the weights is important
- Hyperparameter search costly

Svizzera italiana

- Standard training methods are not parallel
- The mapping from weight space to the approximating function is not necessarily continuous
- Inversely not stable: close networks -as approximating elements in function space- in general do not have close weights [Petersen, Raslan, Voigttländer; 2020]

Improve and Control the Training Process

Multilevel Minimization

R. Pieters, Python for Image Understanding, 2015

Parallel Minimization

Partial-differential equations and physics-informed neural networks¹

Given $\Omega \times (0,T]$, find $u: \Omega \times (0,T] \to \mathbb{R}$, such that

$$\begin{split} \mathcal{P}(u) &= f(\boldsymbol{x}), & \text{ in } \Omega \times (0,T], \\ u &= u_{\mathrm{IC}}, & \text{ at } \Omega \times \{0\}, \\ u &= u_{\mathrm{BC}}, & \text{ on } \partial\Omega \times (0,T], \end{split}$$

where $\ensuremath{\mathcal{P}}$ denotes a nonlinear operator

Goal: Approximate solution u(x,t) using neural network, i.e., $u(x,t)\approx u_{\rm NN}=DNN(\pmb{\theta};x,t)$

¹Raissi et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational physics, 2019

Introduction

PINNs

Loss functional

$$\mathcal{L}(\boldsymbol{\theta}) := \underbrace{\frac{1}{|\mathcal{D}_{\text{int}}|} \sum_{(\boldsymbol{x}_j, t_j) \in \mathcal{D}_{\text{int}}} |\mathcal{R}(u_{\boldsymbol{\theta}}(\boldsymbol{x}_j, t_j))|^2}_{\text{Interior loss}} + \underbrace{\frac{1}{|\mathcal{D}_{\text{BC}}|} \sum_{(\boldsymbol{x}_j, t_j) \in \mathcal{D}_{\text{BC}}} |u_{\boldsymbol{\theta}}(\boldsymbol{x}_j, t_j) - u_{\text{BC}}|^2}_{\text{Boundary loss}} + \underbrace{\frac{1}{|\mathcal{D}_{\text{IC}}|} \sum_{\boldsymbol{x}_j \in \mathcal{D}_{\text{IC}}} |u_{\boldsymbol{\theta}}(\boldsymbol{x}_j, 0) - u_{\text{IC}}|^2}_{\text{Initial-condition loss}}}$$
Error
$$\mathcal{E} := \|u_{\text{NN}} - u\| \leq \underbrace{\|u_{\text{NN}} - u_{\text{opt}}\|}_{\text{Optimization error}} + \underbrace{\|u_{\text{opt}} - u_{\text{h}}\|}_{\text{Network's approximation error}} + \underbrace{\|u_{\text{h}} - u\|}_{\text{Discretization error}}$$

- Discretization error determined by the number/locations of collocation points
- Network's approximation error determined by the network architecture
- Optimization error determined by the choice of optimizer

Nonlinear preconditioning framework³,⁴

• Consider the framework of nonlinear system of equations

 $F(\boldsymbol{\theta}) := \nabla \mathcal{L}(\boldsymbol{\theta}) = 0$

• Instead of solving $F(\theta) = 0$, our goal is to construct and solve a nonlinearly preconditioned system of equations

 $\mathcal{H}(\boldsymbol{\theta}) = F(G(\boldsymbol{\theta})) = 0$

where $G(\boldsymbol{\theta})$ is an outcome of local solution process, i.e.,

- $G(\boldsymbol{\theta})$ provides an improved initial iterate for the next optimization step
- $F(G(\boldsymbol{\theta}))$ can be seen as composite multiplicative preconditioner

³Brune et al., Composing scalable nonlinear algebraic solvers, SIAM Review, 2015

⁴Dolean et al., Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition Newton's Method, SIAM SISC. 2016

Decomposition of DNN

Example of the horizontal decomposition of network.

- \bullet Decompose the network into S subnetworks
- Transfer operators
 - Restriction operator $R_s : \mathbb{R}^n \to \mathbb{R}^{n_s}$ extracts the parameters associated with subdomain s, i.e.,

$$\boldsymbol{\theta}_s = \boldsymbol{R}_s \boldsymbol{\theta}, \quad \text{for } s = 1, \dots, S$$

• Extension operator $E_s : \mathbb{R}^{n_s} \to \mathbb{R}^n$ extends quantities related to subdomain s to the whole DNN, i.e.,

$$oldsymbol{ heta} = \sum_{s=1}^{S} oldsymbol{E}_s oldsymbol{ heta}_s$$

Nonlinearly preconditioned training

Local solves

• Let $G_s: \mathbb{R}^n \to \mathbb{R}^{n_s}$ be a local solution operator for $1 \leq s \leq S$, such that

$$F\bigg(\sum_{s=1}^{S} \boldsymbol{E}_{s}\boldsymbol{G}_{s}(\underbrace{\boldsymbol{R}_{s}\boldsymbol{\theta}}_{:=\boldsymbol{\theta}_{s}})\bigg) = 0,$$

• This corresponds to minimizing $\mathcal L$ wrt. $oldsymbol{ heta}_s$, thus

$$\boldsymbol{\theta}_s^* = \mathrm{argmin}_{\boldsymbol{\theta}_s} \mathcal{L}(\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_s, \dots, \boldsymbol{\theta}_S),$$

where $\boldsymbol{\theta} = [\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_s, \dots, \boldsymbol{\theta}_S]^{ op}$, while parameters of all other subdomains are kept fixed

Training of subnetworks

A sketch of local-to-global updates utilized by the ASPQN

• update global parameters: $G(\theta^{(k)}) = \theta^{(k)} + \alpha^{(k)} \sum_{s=1}^{N_{sd}} E_s(\theta_s^* - R_s \theta^{(k)})$ where θ_s^* represents a solution of the local minimization problem obtained in additive or multiplicative manner, associated with s-th subnetwork, while $\alpha^{(k)}$ denotes a step-size.

Right preconditioned L-BFGS

• Update from the subnetworks

$$\boldsymbol{\theta}^{(k+1/2)} = G(\boldsymbol{\theta}^{(k)}) = \boldsymbol{\theta}^{(k)} + \alpha^{(k)} \sum_{s=1}^{N_{sd}} \boldsymbol{E}_s(\boldsymbol{\theta}_s^* - \boldsymbol{R}_s \boldsymbol{\theta}^{(k)})$$

• Given memory of m secant pairs $\{s^{(i)}, y^{(i)}\}_{i=k-m}^{k-1}$, L-BFGS Hessian approximation is given as

$$\begin{split} \boldsymbol{B}^{(k+1)} &= \boldsymbol{B}^{(0)} - \begin{bmatrix} \boldsymbol{B}^{(0)} \boldsymbol{S}^{(k)} & \boldsymbol{Y}^{(k)} \end{bmatrix} \begin{bmatrix} (\boldsymbol{S}^{(k)})^\top \boldsymbol{B}^{(0)} \boldsymbol{S}^{(k)} & \boldsymbol{L}^{(k)} \\ (\boldsymbol{L}^{(k)})^\top & -\boldsymbol{D}^{(k)} \end{bmatrix}^{-1} \begin{bmatrix} (\boldsymbol{S}^{(k)})^\top \boldsymbol{B}^{(0)} \\ (\boldsymbol{Y}^{(k)})^\top \end{bmatrix}, \\ \text{where } (\boldsymbol{S}^{(k)})^\top \boldsymbol{Y}^{(k)} &= \boldsymbol{L}^{(k)} + \boldsymbol{D}^{(k)} + \boldsymbol{U}^{(k)} \text{ and } \boldsymbol{B}^{(0)} = \gamma \boldsymbol{I}, \text{ with } \gamma = \frac{\langle \boldsymbol{y}^{(k)}, \boldsymbol{y}^{(k)} \rangle}{\langle \boldsymbol{y}^{(k)}, \boldsymbol{s}^{(k)} \rangle} \end{split}$$

• Matrices $m{S}^{(k)},m{Y}^{(k)}\in\mathbb{R}^{m imes n}$ contain corrections and gradient displacements obtained as

$$egin{aligned} oldsymbol{s}^{(k)} &= oldsymbol{ heta}^{(k+1)} - oldsymbol{ heta}^{(k+1/2)} \ oldsymbol{y}^{(k)} &=
abla \mathcal{L}(oldsymbol{ heta}^{(k+1)}) -
abla \mathcal{L}(oldsymbol{ heta}^{(k+1/2)}) \end{aligned}$$

Pseudo-algorithm

- For a given $\theta^{(k)}$, perform local step:
 - training on subnetworks in an *additive* manner (parallel)

Find
$$\boldsymbol{\theta}_s^* = \operatorname{argmin}_{\boldsymbol{\theta}_s} \mathcal{L}(\boldsymbol{\theta}_1^{(k)}, \dots, \boldsymbol{\theta}_s, \dots, \boldsymbol{\theta}_S^{(k)})$$

• training on subnetworks in a *multiplicative* manner (sequential)

Find
$$\boldsymbol{\theta}_s^* = \operatorname{argmin}_{\boldsymbol{\theta}_s} \mathcal{L}(\boldsymbol{\theta}_1^*, \dots, \boldsymbol{\theta}_{s-1}^*, \boldsymbol{\theta}_s, \boldsymbol{\theta}_{s+1}^{(k)}, \dots, \boldsymbol{\theta}_S^{(k)})$$

- Ø Synchronization step
- 3 Preconditioned quasi-Newton step
- Momentum update
- G Global update using momentum step
- **6** Update $oldsymbol{S}^{(k)}$ with
- **7** Update $oldsymbol{Y}^{(k)}$ with

$$\begin{split} \boldsymbol{\theta}^{(k+1/2)} & \longleftrightarrow \boldsymbol{\theta}^{(k)} + \sum_{s=1}^{S} \boldsymbol{E}_{s}(\boldsymbol{R}_{s}\boldsymbol{\theta}^{(k)} - \boldsymbol{\theta}_{s}^{*}) \\ \boldsymbol{p}^{(k+1/2)} & \longleftrightarrow -(\boldsymbol{B}^{(k+1)})^{-1} \nabla \mathcal{L}(\boldsymbol{\theta}^{(k+1/2)}) \\ \boldsymbol{v}^{(k+1/2)} & \longleftrightarrow (1-\mu) \boldsymbol{v}^{(k-1/2)} + \mu \boldsymbol{p}^{(k+1/2)} \\ \boldsymbol{\theta}^{(k+1)} & \longleftrightarrow \boldsymbol{\theta}^{(k+1/2)} + \alpha^{(k+1/2)} \boldsymbol{v}^{(k+1/2)} \\ \boldsymbol{s}^{(k)} & \longleftrightarrow \boldsymbol{\theta}^{(k+1)} - \boldsymbol{\theta}^{(k+1/2)} \\ \boldsymbol{y}^{(k)} & \hookleftarrow \nabla \mathcal{L}(\boldsymbol{\theta}^{(k+1)}) - \nabla \mathcal{L}(\boldsymbol{\theta}^{(k+1/2)}) \end{split}$$

Klein-Gordon Equation (Nonlinear second-order hyperbolic PDE)

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} + \alpha \nabla^2 u + \beta u + \gamma u^2 &= f(t, x), & \forall (t, x) \in (0, 12] \times (-1, 1), \\ u &= x, & \forall (t, x) \in \{0\} \times [-1, 1], \\ \frac{\partial u}{\partial t} &= 0, & \forall (t, x) \in \{0\} \times [-1, 1], \\ u &= -\cos(t), & \forall (t, x) \in (0, 12] \times \{-1\}, \\ u &= \cos(t), & \forall (t, x) \in (0, 12] \times \{-1\}, \\ u &= \cos(t), & \forall (t, x) \in (0, 12] \times \{1\}, \end{aligned}$$

We employ $\alpha = -1, \beta = 0, \gamma = 1$ and $f(t, x) := -x\cos(t) + x^2\cos^2(t)$.

Burgers' equation

where $\nu = 0.01/\pi$.

Diffusion-Transport equation

$$\begin{split} -\nabla\cdot\mu\nabla u + \pmb{b}\cdot\nabla u &= f, \quad \forall \ (x_1,x_2)\in(0,1)\times(0,1),\\ u &= 0, \quad \text{on } \partial\Omega, \end{split}$$

where $\boldsymbol{b}=(1,1)^{\top}\text{, }f=1$ and $\mu=10^{-2}.$

Numerical Experiments

Network architecture and optimizer setup

Klein-Gordon:

- 6 hidden layers, 50 neurons each
- 10,000 collocation points

Burgers':

- 8 hidden layers, 20 neurons each
- 10,000 collocation points

Transport-Diffusion:

- 10 hidden layers, 50 neurons each
- 10,000 collocation points

State-of-the-art optimizers:

- Adam with fixed learning rate
- L-BFGS with momentum, line-search and memory size, $m=3\,$

Right preconditioned L-BFGS setup:

- L-BFGS as a local optimizer with varying number of steps
- Global step performed by preconditioned L-BFGS with line-search
- Varying number of subdomains and memory size, m=3

Implementation

- PyTorch library
- Nvidia's NCCL backend

Klein-Gordon: ASPQN v/s MSPQN (# iterations)

Klein-Gordon: ASPQN v/s MSPQN (Grad evals ($\# g_e$) and Update Cost)

Performance of the right preconditioned L-BFGS method

Burgers': ASPQN v/s MSPQN (# iterations)

Burgers': ASPQN v/s MSPQN (Grad evals ($\# g_e$) and Update Cost)

Performance of the right preconditioned L-BFGS method

Transport: ASPQN v/s MSPQN (#iterations)

Transport: ASPQN v/s MSPQN (Grad evals ($\# g_e$) and Update Cost)

Comparing computational time

Example	\mathcal{E} (L BECS)	Time to solution (mins)					
	\mathcal{C}_{rel} (L-DI G5)	L-BFGS	Adam	ASPQN	(# nodes)	MSPQN	
Burgers'	4.6×10^{-4}	558.5	-	14.4	(8)	40.7	
Klein-Gordon	6.1×10^{-4}	236.5	-	6.8	(6)	26.9	

2

Line-search framework

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \boldsymbol{\alpha}_k \mathbf{s}_k$$

Batch methods:

• Construct \mathbf{s}_k using all samples, e.g.

$$\mathbf{s}_k = -rac{1}{p}\sum_{j=1}^p
abla \ell(f_m(oldsymbol{x}_j,oldsymbol{ heta}),oldsymbol{c}_j)$$

- Iteration cost is linear in p
- Convergence with constant α_k or α_k which is adaptively chosen via line-search

Stochastic methods:

• Construct s_k using a sample, e.g.

 $\mathbf{s}_k = -\nabla \ell_{j_k}(f_m(\boldsymbol{x}_j, \boldsymbol{\theta}), \boldsymbol{c}_j),$

where j_k from $\{1, \ldots, p\}$

- With $\operatorname{prob}(j_k = j)$, the SG is an unbiased estimate of gradient, i.e., $\mathbb{E}[\nabla \ell_{j_k}(\boldsymbol{\theta})] = \nabla \mathcal{L}(\boldsymbol{\theta})$
- $\bullet\,$ Iteration cost is independent of p
- Convergence requires $\alpha_k o 0$

²Schmidt, CPSC 540: Machine learning. Lecture notes on stochastic gradient, 2018.

Introduction

Batch trust-region (TR) framework ^[Conn et al., '00,...]

 $oldsymbol{0}$ Generate the model $m_k(\mathbf{s}_k) := \mathcal{L}_k + \langle oldsymbol{g}_k, \mathbf{s}_k \rangle + rac{1}{2} \langle \mathbf{s}_k, oldsymbol{B}_k \mathbf{s}_k \rangle$

$$\begin{array}{l} \textcircled{\textbf{O}} \text{ Acceptance: } \rho = \frac{\mathcal{L}(\boldsymbol{\theta}_k + \mathbf{s}_k) - \mathcal{L}(\boldsymbol{\theta}_k)}{m_k(\mathbf{s}_k)} \geq \eta \text{ then } \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{s}_k, \\ \text{ otherwise } \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k, \ \eta \in (0,1) \end{array}$$

 $\textbf{O} \ \ \textbf{Update of the trust-region radius:} \ \ \Delta_k \ \textbf{by means of} \ \rho \\$

No user-specified learning rate needed!

Stochastic trust-region (TR) framework

- $\begin{array}{l} \bullet \quad \text{Generate the model} \\ m_k(\mathbf{s}_k) := \mathcal{L}_k + \langle \boldsymbol{g}_k, \mathbf{s}_k \rangle + \frac{1}{2} \langle \mathbf{s}_k, \boldsymbol{B}_k \mathbf{s}_k \rangle \end{array}$
- Solve TR subproblem

 $\min_{\mathbf{s}_k \in \mathbb{R}^n} m_k(\mathbf{s}_k)$ subject to $\|\mathbf{s}_k\|_p \leq \Delta_k$

3 Acceptance:
$$\rho = \frac{\mathcal{L}(\boldsymbol{\theta}_k + \mathbf{s}_k) - \mathcal{L}(\boldsymbol{\theta}_k)}{m_k(\mathbf{s}_k)} \ge \eta$$

then $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{s}_k$,

otherwise ${oldsymbol{ heta}}_{k+1}={oldsymbol{ heta}}_k$, $\eta\in(0,1)$

(Update of the trust-region radius: Δ_k by means of ρ

- Evaluate \mathcal{L} and g_k exactly, while sub-sample B_k [Xu et al., '20, '21...]
- Evaluate \mathcal{L} exactly, but use sub-sampled information for evaluation of g_k and B_k [Gratton et al., '18, Erway et al., '20,...]
- Use subsampled information to evaluate \mathcal{L}, g_k and B_k [Bellavia et al., '18, Blanchet et al., '19, Chen et al., '15, Mohr et al., '19,...]
 - Decrease in mini-batch loss does not imply decrease in global loss
 ⇒ to preserve global convergence
 L, *g_k* have to be estimated with increasing accuracy, e.g., by enlarging the sample sizes

Nonlinear multilevel minimization techniques

Nonlinear multilevel minimization methods

- Commonly used in numerics to solve PDEs as they are of optimal complexity and scalability
- An extension to linear multigrid ^[Briggs et al., '00; Hackbusch '13;...]
- Solving system of eqs. arising from discretization of PDEs:
 - FAS^[Brandt '77], NLMG ^[Hackbusch '85; Reusken et al., '87, '88], MNM^[Yavneh, Dardyk '06],...
- Nonlinear optimization perspective:
 - Line-search: MG/OPT ^[Nash '00], LSMM ^[Wen, Goldfarb '08], MMOP^[Borzi, Schultz '09], CSML^[Frandi, Papini '14], SDM^[Ta, Xu '98 '02; Chen et al., '19], NeMO^[He et al., '22]....
 - Trust-region: RMTR ^[Gratton et al., '06 '08 '10; Gross et al., '09] AMRTR^[Ulbrich, Ziems '11 '17], PODRMTR^[Kragel '05],...
 - Cubic/higher order regularization: MARq ^[Calandra et al., '19]

Nonlinear smoothing

Nonlinear smoothing

Nonlinear solve

Nonlinear multilevel minimization framework

1. Construction of a hierarchy of auxiliary "low-cost" objective functions $\{\mathcal{L}^l\}_{l=1}^L$, where \mathcal{L}^l is computationally cheaper to minimize than \mathcal{L}^{l+1}

- 2. Transfer operators $\{\mathbf{I}_l^{l+1}\}_{l=1}^{L-1}$, $\{\mathbf{R}_{l+1}^l\}_{l=1}^{L-1}$, $\{\mathbf{P}_{l+1}^l\}_{l=1}^{L-1}$
 - Actual form of the transfer operators depends on the structure and the dimension of $\{\mathcal{L}^l\}_{l=1}^L$
 - We consider three types:
 - Prolongation operator $\mathbf{I}_l^{l+1}: \mathbb{R}^{n^l} \to \mathbb{R}^{n^{l+1}}$ for transferring primal variables
 - Restriction operator $\mathbf{R}_{l+1}^{l}: \mathbb{R}^{n^{l+1}} \to \mathbb{R}^{n^{l}}$, where $\mathbf{R}_{l+1}^{l}:=(\mathbf{I}_{l}^{l+1})^{T}$, for transferring dual variables
 - Projection operator $\mathbf{P}_{l+1}^l: \mathbb{R}^{n^{l+1}} o \mathbb{R}^{n^l}$ for transferring primal variables

3. Convergence control

- Constructing the coarse level models, which are at least first-order consistent with fine-level model
- Employing globalization strategy to ensure a convergence

Construction of coarse-level models

 $1^{\texttt{st-order}} \text{ additive approach}^{[\texttt{Brandt '77; Nash '00; ...]}}$

where

$$\delta \mathbf{g}^l := \begin{cases} \boldsymbol{R}_{l+1}^l \nabla h^{l+1}(\boldsymbol{\theta}_{\mu_1}^{l+1}) - \nabla \mathcal{L}^l(\boldsymbol{\theta}_0^l), & \text{if } l < L, \\ \mathbf{0}, & \text{otherwise} \end{cases}$$

- First coarse-level correction \mathbf{s}^l goes in the direction of the restricted fine-level gradient
- If \mathbf{s}^l is descent direction on level $l\implies$ descent direction on level l+1

$$\langle \nabla h^{l}(\boldsymbol{\theta}_{0}^{l}), \mathbf{s}^{l} \rangle = \langle \boldsymbol{R}_{l+1}^{l} \nabla h^{l+1}(\boldsymbol{\theta}_{\mu_{1}}^{l+1}), \mathbf{s}^{l} \rangle = \langle \nabla h^{l+1}(\boldsymbol{\theta}_{\mu_{1}}^{l+1}), \mathbf{I}_{l}^{l+1} \mathbf{s}^{l} \rangle$$

Convergence control

Line-search

- Employ globally convergent optimizer (LS method) on each level
- Find $\alpha^{l+1},$ such that

 $h^{l+1}(\boldsymbol{\theta}_{\boldsymbol{\mu}_1}^{l+1} + \boldsymbol{\alpha}^{l+1}\mathbf{I}_l^{l+1}\mathbf{s}_*^l) < h^{l+1}(\boldsymbol{\theta}_{\boldsymbol{\mu}_1}^{l+1})$

Trust-region

- Employ globally convergent optimizer (TR method) on each level
- Preserve fine-level TR constraint, i.e., $\|\mathbf{I}_l^{l+1}\mathbf{s}_*^l\|_p \leq \Delta_{\mu_1}^{l+1}$
- Accept $\mathbf{I}_l^{l+1}\mathbf{s}_*^l$ only if $\rho_{\mu_1+1}^{l+1} \geq \eta,$ where $\eta>0$ and

$$\begin{split} \rho_{\mu_1+1}^{l+1} &= \frac{h^{l+1}(\boldsymbol{\theta}_{\mu_1}^{l+1}) - h^{l+1}(\boldsymbol{\theta}_{\mu_1}^{l+1} + \mathbf{I}_l^{l+1}\mathbf{s}_*^l)}{h^l(\mathbf{P}_{l+1}^l\boldsymbol{\theta}_{\mu_1}^{l+1}) - h^l(\boldsymbol{\theta}_*^l)} \\ &= \frac{\text{fine-level decrease}}{\text{coarse-level decrease}} \end{split}$$

Construction of multilevel hierarchy and transfer operators by exploring finite-sum structure of the loss function

Multilevel variance reduction (MLVR) method

Low-cost models:

• Construction of multilevel hierarchy by coarsening in number of samples

 $\begin{matrix} \qquad \qquad \\ \mathsf{hierarchy of datasets:} \\ |\mathcal{D}^1| \leq \cdots \leq |\mathcal{D}^L| := |\mathcal{D}| \end{matrix}$

Transfer operators:

• Parameter space remains same

Transfer operators are identity!

$$egin{aligned} \mathcal{D}^3 &:= \mathcal{D} \ \mathcal{D}^3 &:= \mathcal{D} \ \end{pmatrix} \mathcal{L} &:= rac{1}{|\mathcal{D}|} \sum_{j=1}^{|\mathcal{D}|} \ellig(f_m(oldsymbol{x}_j,oldsymbol{ heta}),oldsymbol{c}_jig) \ & \mathcal{D}^2 \subset \mathcal{D} \ \mathcal{L}^2 &:= rac{1}{|\mathcal{D}^2|} \sum_{j=1}^{|\mathcal{D}^2|} \ellig(f_m(oldsymbol{x}_j,oldsymbol{ heta}),oldsymbol{c}_jig) \ & \mathcal{D}^1 \subset \mathcal{D} \ \mathcal{L}^1 &:= rac{1}{|\mathcal{D}^1|} \sum_{j=1}^{|\mathcal{D}^1|} \ellig(f_m(oldsymbol{x}_j,oldsymbol{ heta}),oldsymbol{c}_jig) \end{aligned}$$

 Different choice of {D^l}^L_{l=1}, coarse-level models and level optimizers give rise to novel as well as existing algorithms, e.g., SSN^[Bollapragada et al., '18], SVRG^[Johnson et al, '13], SPIDER^[Fang et al., '18], ...

 \implies allows for theoretical analysis of multiple methods using one algorithmic framework

Example: Subsampled Newton as a special case of two level MLVR method

Construction of coarse-level models (1st-order additive approach) - two level settings:

$$egin{aligned} h^1(oldsymbol{ heta}) &:= \mathcal{L}^1(oldsymbol{ heta}) + \langle \underbrace{\mathcal{R}
abla \mathcal{L}(ilde{oldsymbol{ heta}}) -
abla \mathcal{L}^1(P ilde{oldsymbol{ heta}})}_{\delta \mathbf{g}^1}, oldsymbol{s}^1
angle, \ &:= rac{1}{|\mathcal{D}^1|} \sum_{j \in \mathcal{D}^1} \ellig(f_m(oldsymbol{x}_j, oldsymbol{ heta}), oldsymbol{c}_jig) + \Big\langle \underbrace{rac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}}
abla \ellig(f_m(oldsymbol{x}_j, oldsymbol{ heta}), oldsymbol{c}_jig) - rac{1}{|\mathcal{D}^1|} \sum_{j \in \mathcal{D}^1}
abla \ellig(f_m(oldsymbol{x}_j, oldsymbol{ heta}), oldsymbol{c}_jig), oldsymbol{s}^1 \Big
angle, \ &igned \ &igned$$

• $\tilde{\theta} := \theta_{\mu_1}^2 := \theta_0^1$ is the initial guess on coarse level (l = 1), i.e. projected iterate from the fine level

Example: Subsampled Newton as a special case of two level MLVR method

$$h^{1}(\boldsymbol{\theta}) := \frac{1}{|\mathcal{D}^{1}|} \sum_{j \in \mathcal{D}^{1}} \ell\big(f_{m}(\boldsymbol{x}_{j}, \boldsymbol{\theta}), \boldsymbol{c}_{j}\big) + \left\langle \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \nabla \ell\big(f_{m}(\boldsymbol{x}_{j}, \tilde{\boldsymbol{\theta}}), \boldsymbol{c}_{j}\big) - \frac{1}{|\mathcal{D}^{1}|} \sum_{j \in \mathcal{D}^{1}} \nabla \ell\big(f_{m}(\boldsymbol{x}_{j}, \tilde{\boldsymbol{\theta}}), \boldsymbol{c}_{j}\big), \boldsymbol{s}^{1} \right\rangle$$

The V-cycle of MLVR method then produces the following update rule

$$\begin{split} \tilde{\boldsymbol{\theta}} & \leftarrow \tilde{\boldsymbol{\theta}} + \boldsymbol{I}(-\alpha \big(\nabla^2 h^1(\boldsymbol{P}\tilde{\boldsymbol{\theta}})\big)^{-1} \nabla h^1(\boldsymbol{P}\tilde{\boldsymbol{\theta}})) \\ \tilde{\boldsymbol{\theta}} & \leftarrow \tilde{\boldsymbol{\theta}} - \alpha \bigg(\underbrace{\frac{1}{|\mathcal{D}^1|} \sum_{j \in \mathcal{D}^1} \nabla^2 \ell \big(f_m(\boldsymbol{x}_j, \tilde{\boldsymbol{\theta}}), \boldsymbol{c}_j\big)}_{\text{Subsampled Hessian}} \bigg)^{-1} \underbrace{\frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \nabla \ell \big(f_m(\boldsymbol{x}_j, \tilde{\boldsymbol{\theta}}), \boldsymbol{c}_j\big)}_{\text{Full gradient}}, \end{split}$$

MLVR - traditional MG configuration and line-search globalization strategy

Training error, $\mathcal{L}(\theta) - \mathcal{L}(\theta^*)$, with respect to effective gradient evaluations for SVRG, SARAH, sub-sampled Newton (SSN), two and three level variants of MLVR method (MLVR2, MLVR3).

A. Kopaničáková et al

BROWN

ASTROM - Adaptive Sub-sampled Trust-RegiOn Method

- Employ trust-region globalization strategy
- Recall, quality of the coarse-level correction s_*^l is measured by means of $\rho_{\mu_1+1}^{l+1}$, where

$$\rho_{\mu_1+1}^{l+1} = \frac{h^{l+1}(\tilde{\boldsymbol{\theta}}) - h^{l+1}(\tilde{\boldsymbol{\theta}} + \mathbf{s}_*^l)}{h^l(\tilde{\boldsymbol{\theta}}) - h^l(\tilde{\boldsymbol{\theta}} + \mathbf{s}_*^l)} = \frac{\text{fine-level decrease}}{\text{coarse-level decrease}}$$

- Utilize $\rho_{\mu_1+1}^{l+1}$ to dynamically adapt coarse-level approximation, i.e. \mathcal{L}^l
 - If $\rho_{\mu_1+1}^{l+1} > \eta_1$, accept coarse level correction, keep the dataset \mathcal{D}^l as is
 - If $\rho_{\mu_1+1}^{l+1} \leq \eta_1$, reject coarse level correction, increase number of samples in the dataset \mathcal{D}^l
- As the iterative process progresses, ASTROM becomes batch TR

ASTROM (2 levels) - typical convergence behavior

Convergence history of ASTROM method for the logistic regression example with the australian dataset. An initial number of samples on coarse level equals to 2% of the whole dataset \mathcal{D} .

ASTROM (2 levels) vs. SSN vs. Batch TR (Gissette dataset)

Method	TR	ASTROM				SSN (Ir)			
$ \mathcal{D}^1 / \mathcal{D} $	100%	1%	10%	25%	50%	1% (0.075)	10% (0.1)	25% (0.5)	50% (0.75)
# iterations	16	31	16	14	13	190	143	23	21
$\# abla \mathcal{L}$ evals	16	32	24	24	29	190	143	23	21
$\# abla^2 \mathcal{L}$ evals	16	5.9	10.1	12.4	14.8	1.9	14.3	5.75	11.5
# CG iters.	148	47.2	108.3	125.2	134.9	1,900	1,430	230	210

Convergence history of ASTROM, TR, SSN methods for logistic regression example with Gissette dataset.

Construction of multilevel hierarchy and transfer operators by exploring structure of the DNN architecture

Multilevel training of ResNets

ResNets and multilevel methods ^[He et al., '15; He et al., '16]

A. Kopaničáková et al.

Multilevel training of ResNets

Numerical Results - Convolutional ResNets ³

³Kopaničáková A., Krause R., Globally Convergent Multilevel Training of Deep Residual Networks, SIAM Journal on Scientific Computing, 2022.

A. Kopaničáková et al.

Multiscale Training Algorithms for Deep Neural Networks

6

Distributed learning by parallelizing in samples

• Explore the fact that the arising minimization problems have finite sum form, i.e.,

$$\min_{oldsymbol{ heta}\in\mathbb{R}^d}\mathcal{L}(oldsymbol{ heta},\mathcal{D}) = rac{1}{|\mathcal{D}|}\sum_{j\in\mathcal{D}}\ell_j(oldsymbol{ heta})$$

- Evaluation of objective and derivatives can be performed independently for subsets of the dataset
 - Larger mini-batches allows to explore more resources, but hinders the generalization properties of the SGD^[Zinkevich et al., '10, Shallue et al., '19]
 - A synchronization step is necessary after each gradient evaluation
 - Hyper-parameter search required for learning rate

Parallelization via domain decomposition

Additive preconditioned trust-region method

(APTS)^[Gross, Krause '09]

• Subdomains are created by decomposing the current mini-batch into $n_p \ {\rm smaller} \ {\rm chunks/sub-domains}$

 \implies suitable for any type of DNN architecture

• Non-overlapping decomposition, i.e., $\mathcal{D}_b := \cup_{p=1}^{n_p} S_b^p$, where $S_b^p \subset \mathcal{D}_b$, $S_b^i \cap S_b^j = \emptyset$, for $i \neq j$

• Overlap can be constructed by repeated sampling

APTS method

Trust-region based convergence control:

• The mini-batch correction s_b is obtained by summing across all sub-domains, i.e.,

$$\mathbf{s}_b = \sum_{p=1}^{n_p} \mathbf{s}_b^p$$

- The number of subdomain steps and the size of the sub-domain corrections is controlled such that $\|s_b\| \le \Delta_b$
- The mini-batch correction s_b has to provide a decrease in the mini-batch objective function, i.e., acceptance only if ρ_b > η, where

$$\rho_b = \frac{\mathcal{L}(\boldsymbol{\theta}_0, \mathcal{D}_b) - \mathcal{L}(\boldsymbol{\theta}_0 + \mathbf{s}_b, \mathcal{D}_b)}{\sum_{p=1}^{n_p} \left(h(\boldsymbol{\theta}_0, \mathcal{D}_b^p) - h(\boldsymbol{\theta}_0 + \mathbf{s}_b^p, \mathcal{D}_b^p) \right)} = \frac{\text{mini-batch decrease}}{\text{sum of sub-domain descreases}}$$

where \boldsymbol{h} are sub-domain objective functions constructed using the first-order consistency approach

A. Kopaničáková, S. Cruz, R. Krause

APTS in Weights

MNIST full dataset, 10 runs. Varying network size

• Order (o) of Taylor expansion

Overlap (ol): ol% between all mini-batches

Università della Svizzera italiana Euler institute

MNIST - mb size=10000, overlap=1.0%

APTS in Weights

MNIST mbs=10K, 10 runs. Small network, varying overlap

MNIST - mb size=10000, overlap=1.0% FCNN Layers=3, Parameters=26506)

- Dotted lines are min/max accuracy or loss
- Order (o) of Taylor expansion

- World size (ws): number of processes/nodes/submodel
- Overlap (ol): ol% between all mini-batches

APTS in Weights

Small network, varying order CIFAR10 - mb size=50000, overlap=0.0% CIFAR10 - mb size=50000, overlap=0.0% CNN Layers=6, Parameters=62006) CNN Layers=6, Parameters=62006) 50 TR(o=1)TR(o=2 - SR1)2.4 40 APTS(TR o=1, ws=2)2.2 APTS(TR o=1, ws=4)accuracy APTS(TR o=1, ws=6) sso 2.0 30 .6 20 AVG TR(o=1)TR(o=2 - SR1) APTS(TR o=1, ws=2) 1.6 10 APTS(TR o=1, ws=4)APTS(TR o=1, ws=6)1.4 0 20 40 60 100 80 20 40 60 80 0 100 Epoch Epoch CIFAR10 - mb size=50000, overlap=0.0% CIFAR10 - mb size=50000, overlap=0.0% CNN Layers=6, Parameters=62006) CNN Layers=6, Parameters=62006) 50 2.4 TR(o=1)TR(o=2 - SR1)40 APTS(TR o=2, ws=2)2.2 APTS(TR o=2, ws=4) Avg. accuracy 05 05 Order 2^{8 2.0} APTS(TR o=2, ws=6) TR(o=1)TR(o=2 - SR1) APTS(TR o=2, ws=2)1.6 10 APTS(TR o=2, ws=4)APTS(TR o=2, ws=6)1.4 0 · 20 40 100 0 60 80 0 20 40 60 80 100 Epoch Epoch

- Dotted lines are min/max accuracy or loss
- Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel

CIFAR full dataset, 10 runs.

• Overlap (ol): ol% between all mini-batches

CIFAR10 - mb size=10000, overlap=1.0%

APTS in Weights

CIFAR mbs=10K, 10 runs. Small network, varying order CIFAR10 - mb size=10000, overlap=1.0% CNN Layers=6, Parameters=62006)

• Order (o) of Taylor expansion

- Overlap (ol): ol% between all mini-batches

Università della Svizzera italiana Euler institute

APTS in Weights

Influence of global convergence control

- Dotted lines are min/max accuracy or loss
 - Order (o) of Taylor expansion

- World size (ws): number of processes/nodes/submodel
- Overlap (ol): ol% between all mini-batches

6

APTS in Data

MNIST full dataset, 10 runs.

APTS in Data

- Dotted lines are min/max accuracy or loss
- Order (o) of Taylor expansion

• World size (ws): number of processes/nodes/submodel

MNIST mbs=10K, 10 runs.

• Overlap (ol): ol% between all mini-batches